Issues in Machine Learning

Zhiyao Duan Associate Professor of ECE and CS University of Rochester

Some figures are copied from the following book

• LWLS - Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, *Machine Learning: A First Course for Engineers and Scientists*, Cambridge University Press, 2022.

Many Issues

- Robustness
- Explainability
- Accountability
- Fairness
- Bias
- ...

Robustness – Adversarial Attacks

Goodfellow, Shlens, & Szegedy, Explaining and Harnessing Adversarial Examples, 2017.

Robustness – Adversarial Attacks

https://adversarial-learning.princeton.edu/darts/

Robustness – Natural Adversarial Examples

https://arxiv.org/pdf/1907.07174.pdf ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

Explainability

https://lawtomated.com/explainable-ai-all-you-need-to-know-the-what-how-why-of-explainable-ai/

Explainability

Five key questions to answer when building Explainable AI

https://swisscognitive.ch/2021/08/23/explainable-ai/

- Avoid misleading claims
 - Exaggeration for commercial gain, cherry-picking results, etc.
- Explain models in understandable ways
 - Avoid jargons

Accountability and Transparency

- External accountability: users/regulators can hold an organization responsible for harmful ML
- Internal accountability: developers/researchers can "debug" a harmful ML system
- Transparency: decisions around fair ML can be understood by stakeholders

Raji et al., *Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing*. https://doi.org/10.1145/3351095.3372873

Fairness

- How to define fairness?
 - Misclassification error rate
 - Non-Swedes: 1/3
 - Swedes: 1/3
 - False Negative Rate (FNR) = FN/(TP+FN)
 - Non-Swedes: 1/2
 - Swedes: 1/9
 - False Positive Rate (FPR) = FP/(TN+FP)
 - Non-Swedes: 1/4
 - Swedes: 7/15
- Definition depends on the application scenario
 - Medical diagnosis vs. criminal sentencing

Table 12.1: Proportion of people shown and/or interested in a course for an imagined machine learning algorithm. The top table is for non-Swedes (in this case we can think of them as citizens of another country, but who are eligible to study in Sweden); the bottom table is for Swedes.

	Not Interested	Interested
Non-Swedes	(y = -1)	(y = 1)
Not recommended course $(\hat{y}(\mathbf{x}) = -1)$	TN = 300	FN = 100
Recommended course $(\hat{y}(\mathbf{x}) = 1)$	FP = 100	TP = 100
	Not Interested	Interested
Swedes	(y = -1)	(y = 1)
Not recommended course $(\hat{y}(\mathbf{x}) = -1)$	TN = 400	FN = 50
Recommended course $(\hat{y}(\mathbf{x}) = 1)$	FP = 350	TP = 400

Fairness

- How to define fairness?
 - False Positive Rate (FPR) = FP/(TN+FP):
 Not fair
 - Black: 805/(990+805) = 44.8%
 - White: 349/(1139+349)=23.4%
 - True Positive Rate (TPR) =
 TP/(FN+TP) = Recall: Not fair
 - Black: 1369/(532+1369)=72.0%
 - White: 505/(461+505)=52.2%
 - Precision = TP/(TP+FP): OKay
 - Black: 1369/(1369+805)=63.0%
 - White: 505/(505+349)=59.1%

Table 12.2: Confusion matrix for the Pro-Publica study of the Compas algorithm. For details see Larson et al. (2016).

Black defendants	Didn't reoffend $(y = -1)$	Reoffended $(y = 1)$
Lower risk $(\widehat{y}(\mathbf{x}) = -1)$	TN = 990	FN = 532
Higher risk $(\hat{y}(\mathbf{x}) = 1)$	FP = 805	TP = 1369
White defendants	Didn't reoffend $(y = -1)$	Reoffended $(y = 1)$
Lower risk $(\widehat{y}(\mathbf{x}) = -1)$	TN = 1139	FN = 461
Higher risk $(\hat{y}(\mathbf{x}) = 1)$	FP = 349	TP = 505

Fairness

- Theorem: if we cannot perfectly classify the data and the base rate (positive/negative) of the outcome differs between the two groups, then it is impossible to achieve simultaneous equality (i.e., fairness between groups) in precision, true positive rate (recall), and false positive rate!
 - If we achieve equality in two of them, then the third one must not equal!
- We should be aware of these limitations and explain them to users

- Kleinberg, Jon, et al. 2018 "Algorithmic fairness."
- Chouldechova, Alexandra, and Aaron Roth. 2018 "The Frontiers of Fairness in Machine Learning."

Bias

• Word2vec: learned embeddings for words

Water - Liquid + Gas = Steam,

Intelligent - David + Susan = Resourceful
Brainy - David + Susan = Prissy
Smart - David + Susan = Sexy

Bolukbasi, Chang, Zou, Saligrama, & Kalai, "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings," NIPS 2016.

Bias

Other Issues

• Privacy

- We are losing privacy as AI models advance
- We are more vulnerable to data misuse
- Information remains in models even if data is deleted
- Copyright
 - Generated content can be very similar to copyrighted content
- Sustainability
 - Sustainability of machine learning: as models become larger, energy consumption (and carbon footprint) increases
 - Machine learning for sustainability
- Misuse and abuse
 - Open-source pros and cons
 - Regulation on AI development?